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a  b  s  t  r  a  c  t

A  new  set  of 142  experimentally  determined  complexation  constants  between  sulfobutylether-�-
cyclodextrin  and  diverse  organic  guest  molecules,  and  78 observations  reported  in  literature,  were  used
for  the  development  of  the  QSPR  models  by the  two  machine  learning  regression  methods  – Cubist  and
Random  Forest.  Similar  models  were  built  for  �-cyclodextrin  using  the 233-compound  dataset  available  in
the literature.  These  results  demonstrate  that  the  machine  learning  regression  methods  can  successfully
eywords:
ulfobutylether-�-cyclodextrin
-Cyclodextrin
omplexation constant
achine learning methods

ubist

describe  the  complex  formation  between  organic  molecules  and  �-cyclodextrin  or  sulfobutylether-�-
cyclodextrin.  In particular,  the  root  mean  square  errors  for  the  test  sets  predictions  by  the  best  models  are
low,  1.9  and  2.7 kJ/mol,  respectively.  The  developed  QSPR  models  can  be used  to  predict  the  solubilizing
effect  of  cyclodextrins  and  to help  prioritizing  experimental  work  in  drug  discovery.

© 2011 Elsevier B.V. All rights reserved.
andom Forest

. Introduction

Modern drug discovery methods tend to advance large and
ydrophobic molecules, which are likely to suffer from limited
olubility and low bioavailability (Lipinski, 2000). Pharmaceu-
ical industry is therefore increasingly interested in the drug
elivery systems that can mitigate these risks. Cyclodextrins
ave been successfully used for drug solubilization both in
esearch environment and in clinical use. For example, sev-
ral commercial products – VFEND IV, Geodon IM,  Abilify IM,
nd Sporanox – include substituted cyclodextrins in their for-
ulations. Cyclodextrins can also stabilize the drug molecule

gainst light, heat, or oxidation, and mask unwanted physiological
ffects (Hedges, 1998). Finally, their physical and biopharmaceu-
ical properties can be tailored with relative ease by adding the
ppropriate functional groups to the ‘parent’ molecule (Szejtli,
998). In particular, hydroxypropyl-�-cyclodextrin (HP-�-CD) and

ulfobutylether-�-cyclodextrin (SBE-�-CD) have high aqueous sol-
bility, are non-toxic, and have low oral bioavailability (Luke et al.,
010; Stella and He, 2008). Additional details on the pharmaceutical
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applications of cyclodextrins can be found in references (Brewster
and Loftsson, 2007; Carrier et al., 2007; Davis and Brewster, 2004;
Loftsson and Brewster, 1996; Loftsson and Duchene, 2007; Luke
et al., 2010; Uekama et al., 1998).

Cyclodextrins increase solubility of drug molecules due to
the formation of soluble inclusion complexes. A molecule of
�-cyclodextrin is a cyclic oligosaccharide composed of 7 �-d-
glycopyranose units. It has a toroidal (barrel-like) structure with
the two openings having different diameters and with the hydroxyl
groups situated around those openings (Szejtli, 1998). These
hydroxyl groups make the exterior of a cyclodextrin molecule
hydrophilic (Fig. 1) and fairly soluble. Moreover, these groups
can be substituted with other functional groups such as hydrox-
ypropyl or sulfobutyl ether in order to fine-tune the properties of a
cyclodextrin molecule. The cyclodextrin’s interior has low polar-
ity (Fig. 1) and favors interaction with the lipophilic molecules
(Connors, 1997). Thus, a non-polar molecule of the appropriate size
may  enter the inner cavity of cyclodextrin, displacing the ‘high-
energy’ water molecules contained there into the bulk solution,
and form a stable complex. Such mechanism of interaction defines
the hydrophobic effect as a major driving force for the complex for-
mation. In addition, dispersive interactions and hydrogen bonding
(with the hydroxyl groups of cyclodextrin) also contribute to the

complex stability (Connors, 1997).

Most commonly cyclodextrin forms a 1:1 inclusion complex
with a drug molecule. The solubility of the resulting complex is
typically higher than that of the drug molecule, and the apparent

dx.doi.org/10.1016/j.ijpharm.2011.03.065
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:alexei.merzlikine@pfizer.com
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Fig. 1. Polarity of �-cyclodextrin molecule (top view) presented via its screening
charge density in water medium. Calculation is done by COSMOtherm software
(Eckert and Klamt, 2011) at the BP-SVP-AM1 COSMO level of theory. Red, blue
a
r

d
t
p
t
c
a

K

w
c
(
(
u
c
i
C

m
p
(
c
m
c
l
w
t
e
m

t
m
m
m
i
(
h

nd  green colors represent acceptor, donor and non-polar (hydrophobic) surfaces,
espectively.

rug solubility increases linearly with the cyclodextrin concen-
ration. Hence, knowing the complexation constant allows one to
redict the solubilizing effect offered by cyclodextrins. Inversely,
he slope of the straight line in drug concentration/cyclodextrin
oncentration coordinates can be used to determine the complex-
tion constant, as shown in the following equation:

eq = 1
S0

× Slope
1 − Slope

, (1)

here S0 is the solubility of the guest molecule in the absence of
yclodextrin and Slope is the slope of the apparent solubility line
Connors, 1996; Higuchi and Connors, 1965). Such 1:1 complexes
commonly referred to as AL-type) are relatively easy to analyze
sing phase-solubility method; however, the method fails for the
omplexes that deviate from 1:1 stoichiometry or whose solubility
s less than that of the free drug (Connors, 1996, 1997; Higuchi and
onnors, 1965).

Although many techniques exist for the experimental deter-
ination of drug–cyclodextrin complexation constant – the

hase-solubility method (described above), spectroscopic methods
UV–vis, CD, NMR), capillary electrophoresis, and thermochemi-
al methods – all of them require resources and compounds that
ay  not be available in early stages of drug discovery. Pharma-

eutical scientist frequently has to make decisions working with
imited amounts of the Active Pharmaceutical Ingradient (API), or

ith virtual molecules, and under severe time constraints. This jus-
ifies a growing interest in developing the in silico methods for fast
stimation of the cyclodextrin complexation energy with a drug
olecule.
Applications of computational chemistry to studies of cyclodex-

rins have been reviewed by Lipkowitz (1998).  Multiple in silico
ethods that are typically used to describe the cyclodextrin–guest
olecule interactions were covered in the review: quantum

echanics (QM), molecular mechanics (MM),  molecular dynam-

cs (MD), Monte Carlo (MC), and quantitative structure–property
or activity) relationship (QSPR or QSAR). Each of these methods
as its own advantages and disadvantages; however, only QSPR
f Pharmaceutics 418 (2011) 207– 216

approach seems to provide a compromise between the speed and
accuracy of the predictions. Thus, QSPR models can become a use-
ful tool to help prioritizing the experimental work in an early drug
discovery setting.

Recently, several QSPR methods were published describing
complexation of �-cyclodextrin with a diverse set of organic
molecules using different algorithms and descriptor sets (Katritzky
et al., 2004; Perez-Garrido et al., 2009; Prakasvudhisarn et al.,
2009; Suzuki, 2001; Suzuki et al., 2000). The modeling algorithms
used in these studies included Comparative Molecular Field Anal-
ysis (CoMFA) (Suzuki et al., 2000), Group Contribution Method
(GCM) (Suzuki, 2001), Multilinear Regression (MLR) (Katritzky
et al., 2004; Perez-Garrido et al., 2009), Substructural Molecular
Fragments (SMF) (Katritzky et al., 2004), Particle Swarm Optimiza-
tion (PSO) and Support Vector Machines (SVMs) (Prakasvudhisarn
et al., 2009).

A number of QSPR models for drug–�-cyclodextrin complexes
have been published; however, the solubilization models for SBE-
�-CD are not available. In this paper, we present a new dataset
describing the equilibrium constants for 1:1 complexation between
drug-like or simpler organic molecules and SBE-�-CD. We  then
report the development of the machine learning models based on
this dataset using Cubist (Quinlan, 1993; Rulequest, 2010) and Ran-
dom Forest (Breiman, 2001). Finally, we confirmed the applicability
of these algorithms to �-cyclodextrin/small organic molecules
complexation using literature data.

2. Materials and methods

2.1. Building the dataset

The dataset of the complexation constants between SBE-�-CD
and a diverse set of organic molecules was  created by combin-
ing the published data with the experimentally measured values.
The literature data (complex formation free energies �G, equilib-
rium constants Keq, or the parameters of the phase–solubility plots)
were accepted if they belonged to 1:1 complexes. Free energies
of complexation were used as is; the equilibrium constants were
converted to the free energies using �G  = −RT ln Kx, where Kx is
a dimensionless equilibrium constant as opposed to apparent sol-
ubility Keq having the dimension of M−1. For aqueous solutions,
Kx ∼= Keq × 55.5. The majority of the reported equilibrium constants
were measured at 25 ◦C and 37 ◦C; when the temperatures were not
reported or reported as “room temperature”, they were assumed
to be 25 ◦C.

The dataset for the complexation between �-CD and small
organic molecules was adapted from Katritzky et al. (2004).

A number of equilibrium constants for drug-like molecules were
measured via phase–solubility technique (Connors, 1996; Higuchi
and Connors, 1965) using SBE-�-CD (Captisol) purchased from
CyDex Pharmaceuticals Inc. and the commercially available guest
molecules.

Briefly, the experimentally determined concentration of the dis-
solved compound at equilibrium with its solid phase at several
cyclodextrin concentrations was plotted against cyclodextrin con-
centration. For 1:1 complexes with the solubility higher than the
intrinsic solubility of the guest compound, such plot becomes a
straight line with the slope and intercept (solubility in the absence
of cyclodextrin) related to the equilibrium constant according to
Eq. (1).

Two series of measurements were performed. In the series 1

(S1 in Table 2), the excess of the solid compound was added to
the 1, 2, 5, 10, 15, and 30 wt% aqueous solutions of SBE-�-CD. The
samples were then equilibrated at 25 ◦C for a minimum of 24 h.
Next, they were centrifuged at 14,000 rpm using Eppendorf 5804R
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Table 1
Equilibrium constants for the complexation between drug-like molecules and SBE-�-CD reported in literature. Unless specified otherwise, the experiments were performed
at  25 ◦C. Unspecified experimental temperatures, or the values reported to as “room temperature”, were assumed to be 25 ◦C.

Compound Keq, M−1 Comments References

17-�-Methyltestosterone 12,933 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
1-Naphthol 1720.0 Kranack et al. (1998)
2-Naphthol 1304.0 Kranack et al. (1998)
5-Phenyl dithiolethione 10,705 Nonlinear phase solubility plot; the linear segment was used for

Keq determination; 37 ◦C
Dollo et al. (1999)

6-O-Benzylguanine 994 NCS 637037 Zia et al. (2000)
Acetohexamide 540.6 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Amlodipine 578.5 LC, CE; average of 2 enantiomers Owens et al. (1998)
Anetholetrithione 12,834 Nonlinear phase solubility plot; the linear segment used for Keq

determination; 37 ◦C
Dollo et al. (1999)

Antalarmin 128.75 pH 2, cation Sanghvi et al. (2009)
Benzthiazide 919.4 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Bupivacaine 149.3 Unionized; 37 ◦C Dollo et al. (1998)
Butylmethoxydibenzoylmethane 2166.6 Nonlinear phase solubility plot, K of 1:1 interaction reported Simeoni et al. (2004)
Carbamazepine 1035.0 Smith et al. (2005)
Carmustin 84.0 Ma et al. (2000)
Chlorpromazine 73,100 Okimoto et al. (1999a)
Chlorpromazine ion 32,100 Okimoto et al. (1999a)
Cinnarizine 69,700 Okimoto et al. (1996)
Danazol  374.6 22 ◦C Jain and Adeyeye (2001)
Digitoxin 29,168 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Digoxin 11,851 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Dimethyldithiolethione 764.0 37 ◦C Dollo et al. (1999)
Dithiolethione 364.0 37 ◦C Dollo et al. (1999)
DY9760  3040 pH 7.4; 37 ◦C; effect of the ionic strength of the solution on Keq

strongly suggests electrostatic contribution
Nagase et al. (2001)

Estradiol 73,799 Okimoto et al. (2004)
Etomidate 445.0 McIntosh et al. (2004)
Flavopiridol 991.0 Li et al. (1999)
Flavopiridol ion 421.0 Li et al. (1999)
Fluasterone 216,129 1.55 × 10−7 M aq sol Zhao et al. (1999)
Flurbiprofen 7996 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Fosphenytoin 41 Narisawa and Stella (1998)
Furosemide 338.3 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Griseofulvin 420.5 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Ibuprofen 2500 Averaged racemate and single isomer; unionized Nerurkar et al. (2005)
Indomethacin 1590 Okimoto et al. (2004)
Indomethacin (ionized) 312.0 Okimoto et al. (2004)
Ketoprofen 1296 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Lidocaine 25.5 37 ◦C Dollo et al. (1998)
Lorazepam 323.0 Holvoet et al. (2005)
m-Cresol 28.0 Adami et al. (2007)
Melphalan 360.0 Ma  et al. (2000)
Methylprednisolone 717 Averaged value 706.0 (Larsen et al., 2005)

727 (Zia et al., 1997) (Zia
et al., 2000)

Midazolam 700.0 Loftsson et al. (2001)
Midazolam, open form 425.0 Loftsson et al. (2001)
Naproxen 6757 Averaged value 3600 (Okimoto et al., 1996)

(Okimoto et al., 2004) 9913
(non-phase-solubility) (Zia
et al., 2000)

Neutral red, pH 5 750.0 Zhang et al. (2002)
Neutral red, pH 7.5 2300 Zhang et al. (2002)
Nifedipine 244.6 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
NSC-639829 3855 Jain et al. (2001)
Oxazepam 422 37 ◦C Franco et al. (2004)
Papaverine 870 Averaged value for unionized molecule 1000.0 (Okimoto et al.,

1996) 885 (Sotthivirat
et al., 2007) 725 (Zia et al.,
2000)

Phenol  128.0 Kranack et al. (1998)
Phenylalanine 32.4 pH 7 Miyajima et al. (2004)
Phenytoin 1170.0 Averaged value 1073 (Narisawa and Stella,

1998) and 1267
(Savolainen et al., 1998)

Phenytoin anion 476 pH 11 Savolainen et al. (1998)
Piroxicam 631.5 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Polythiazide 588.5 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Prazosin 14,750 Averaged value 21,315 (Sotthivirat et al.,

2007)  11,733 unionized
(Zia et al., 2000), (Zia et al.,
2001) 11,202 cation (Zia
et al., 2001)
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Table  1 (Continued)

Compound Keq, M−1 Comments References

Prednisolone 1926 Averaged value 1513 (Okimoto et al., 2004)
2680 (Larsen et al., 2005)
1821 (Zia et al., 1997), 1691
(Sotthivirat et al., 2007)

Propofol 3725 30 ◦C, compare with 3686 at 37 ◦C Babu and Godiwala (2004)
Methyl 4-(2-((1R,2R,3R)-3-hydroxy-2-

((S,E)-3-hydroxy-4-(3-
(methoxymethyl)phenyl)but-1-
enyl)-5-
oxocyclopentyl)ethylthio)butanoate

468.0 Uekama et al. (2001)

Quercetin 4032 30 ◦C Jullian et al. (2007)
Rofecoxib 132.0 Rajendrakumar et al.

(2004)
Sulfadimethoxine 304 Ueda et al. (1998)
Sulfathiazole 576.1 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Tacrolimus 420.0 Arima et al. (2001)
Testosterone 24,670 Averaged value 25855.0 (Sotthivirat et al.,

2007); 23,486 (Okimoto
et al., 1999b)

Thalidomide 86 Kale et al. (2008)
Thiabendazole 443.0 Okimoto et al. (1996)
Tolbutamide 230.05 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Trichlormethiazide 7.45 2-Point phase solubility plot; assuming linearity Ueda et al. (1998)
Tryptophan 43.7 pH 7 Miyajima et al. (2004)
Tyrosine 31.9 pH 7 Miyajima et al. (2004)
Valdecoxib 1422 37 ◦C Rajendrakumar et al.

(2005)
Valproic acid 192 37 ◦C Trapani et al. (2004)
Vinpocetine 340.0 Ribeiro et al. (2003)
Warfarin 5542 Averaged value 10100.0 (Okimoto et al.,

1996) 4463 (Zia et al.,
2000)  2063 unionized (Zia
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Warfarin anion 130 

Ziprasidone 7892 7892 (undissocia

entrifuge. The supernatant was collected, diluted, and analyzed by
PLC. Some compounds demonstrated deviation from linearity at

he highest cyclodextrin concentration; in such cases, the deviating
atapoints were excluded from the analysis because they did not
orrespond to the purely 1:1 association.

In the series 2 (S2), the solubility was determined in phosphate
uffers with pH of 7.4 containing 0, 2, 4, and 6 wt%  of SBE-�-
D. The buffer contained 38 g of Na2HPO4

•12H2O and 3.8 g of
aH2PO4

•2H2O per 1 L. The samples were stirred at 20 ◦C for 24 h,
entrifuged for 15 min  at 15,000 rpm, and the supernatant was
iluted and analyzed by HPLC.

For both series, the equilibrium constant of the complex for-
ation Keq was determined from the linear phase–solubility plots

orresponding to 1:1 complexes. We  used the solubility value mea-
ured experimentally in the absence of cyclodextrins; in the cases
hen it was below the limits of detection, the intercept of the
hase–solubility plot or a literature value was used.

.2. Computational

.2.1. Data preparation
218 data points from Katritzky et al. (2004) and 220 experimen-

al observations reported in this study were used for development
f QSPR models of �-CD and SBE-�-CD complexation free energies,
espectively. All molecules were presented in the SD file format
Dalby et al., 1992) and were titrated in silico to pH 7 using Pfizer
n-house protocols. This procedure was necessary to standardize

odel building and the future applications. When the experimen-
al observations at the different pH values were available for a
olecule, only the data relevant to the ionization at pH = 7 were
etained. After that, the �-CD and SBE-�-CD datasets were split
nto training (90%) and test (10%) sets using a maximum dissim-
larity algorithm, which allowed selection of the representative
et al., 2001)
Zia et al. (2001)

prasidone mesilate) Kim et al. (1998)

subsets of the original datasets. In addition, 15 experimental obser-
vations from the validation set of Suzuki (Suzuki, 2001) were
used as a second test for the �-CD complexation model. Since the
phase–solubility method does not provide information on the posi-
tive complexation free energies (i.e. repulsion), we  assumed that all
non-complexing systems (Keq = 0) involving SBE-�-CD had �G  = 0
as opposed to +∞.

2.2.2. Modeling approaches
We compared the results from the two  different advanced

machine learning regression methods – Random Forest (RF)
(Breiman, 2001) and Cubist (Quinlan, 1993; Rulequest, 2010). Both
methods were demonstrated to be suitable to model the data
covering a very broad chemistry space with possible nonlinear rela-
tionships (Gao et al., 2008; Gupta et al., 2010; Palmer et al., 2007;
Svetnik et al., 2003). In addition, both methods utilize built-in tools
for selection of the important descriptors and thus are quite robust
to overfitting problem.

Cubist is a tool for generating rule-based QSPR models which
can be defined as a pairwise linear modeling method, except that
the rules may overlap. Each rule is a conjunction of conditions
associated with a linear expression. Cubist can also construct mul-
tiple models (committees); each of those is made up of several
rule-based models. Predictions made by the each member of a com-
mittee for a target value of a case are averaged to give the final
prediction. The prediction accuracy of a rule-based model can be
improved by combining it with the nearest-neighbor (or instance-
based) model. The latter predicts the target value of a new case by

finding the n most similar cases in the descriptor space in the train-
ing data and averaging their target values. The importance of the
individual descriptors can be estimated from the frequency of their
use in the final model.
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Random Forest (RF) is an ensemble of ntree unpruned decision
rees created by using bootstrap samples of the training data and
andom subset of mtry variables to define the best split at each node
tree fork) (Breiman, 2001). The bootstrap sample used during tree
rowth is a random selection with replacement from the molecules
n the training set. Model performance for each tree is internally
ssessed with the prediction error of the data left-out in the boot-
trap procedure (out-of-bag data). The average of these results for
ll trees provides an in situ cross-validation (out-of-bag validation).
he RF prediction of new data is made by averaging the individual
redictions of all the trees in the forest. In addition, RF has a built-in
ool to measure the importance of individual descriptors across the
raining set.

The number of trees in the Random Forest in this study was set to
 sufficiently large number of ntree = 1000. The number of different
escriptors tried at each split, mtry, was set to a default value of one
hird of the whole descriptor set (Svetnik et al., 2003).

.2.3. Descriptors
Both Cubist and Random Forest methods utilize intrinsic (built-

n) selection of the important descriptors and are generally not
ensitive to the presence of the irrelevant features. Therefore, a rel-
tively large set of two-dimensional (2D) descriptors was used in
his study including Pfizer modified Molecular Operating Environ-

ent 2D (MOE 2D) set (Chemical Computing Group Inc., 2009, MOE
009.10, http://www.chemcomp.com),  Moriguchi & Blake descrip-
ors (Moriguchi et al., 1992) and a set of in-house SMARTS keys
Lee et al., 2007; Tu and Li, 2004). In addition, Erlangen 2D descrip-
ors (Bauknecht et al., 1996) were also used for building SBE-�-CD
omplexation free energy models. The total number of descriptors
as decreased by exclusion of zero-variance and highly correlated
escriptors – in the cases where the Pearson pairwise correlation
oefficient exceeded the value of 0.85, one descriptor of the pair
as removed.

.2.4. Model selection and comparison
The model performance was evaluated using the predictions

ade for the test sets. Three statistical measures were evaluated –
he root mean square error (RMSE), the mean absolute error (MAE)
nd the squared correlation coefficient between the observed and
redicted data points (R2):

MSE =

√√√√1
n

n∑
i=1

(yobs
i

− ypred
i

)
2
,

AE  = 1
n

n∑
i=1

|yobs
i − ypred

i
|,

2 = 1 −
∑n

i=1(yobs
i

− ypred
i

)
2

∑n
i=1(yobs

i
− yobs,mean

i
)
2

,

here n is the set size, yobs
i

and ypred
i

are the observed and predicted
alues for molecule i.

In addition, prediction reliability was estimated using simi-
arity to the training set of the compounds and the number of
earest neighbors (defined by similarity threshold of 0.7). The sim-

larity matrix used in this study is atom pair similarity (Carhart
t al., 1985; Sheridan et al., 2004). Better prediction is expected

or the compounds with a larger number of the nearest neighbors
nd the higher maximum similarity below 1. Otherwise, there is

 significant extrapolation, and the predicted values contain high
ncertainty.
Fig. 2. Distribution of log Keq of the dataset describing the complexation between
the  SBE-�-CD and the organic guest molecules reported in the current paper.

3. Results and discussion

The equilibrium constants for the complexation between SBE-�-
CD and drug-like molecules reported in literature are summarized
in Table 1. The measured constants are presented in Table 2.

Connors postulated that the logarithm of equilibrium constant
for any non-covalent interaction is normally distributed over 5–6
units of magnitude with the standard deviation of 1 (Connors,
1997). Based on the properties of 721 complexes with �-CD, the
average log Keq was  found to be 2.69, with the standard deviation
of 0.89 (Connors, 1995) Our dataset describing 1:1 complexation
of drug-like molecules with SBE-�-CD obeys this rule: log Keq is
distributed normally over the range of 5.7 units with the mean of
2.75 and the standard deviation of 1.05 (Fig. 2). This proves that
the dataset reported in Tables 1 and 2 is representative of the
drug–cyclodextrin interactions.

3.1. QSPR modeling results

The results of statistical performance of QSPR models for �-CD
and SBE-�-CD complexation free energies are presented in Table 3.
The scatter plots of the predicted vs. observed complexation free
energies are presented in Figs. 3 and 4 for the best-performing mod-
els (RF or Cubist) only. Five most important descriptors for each
model are listed in Table 4. As expected, many of these descriptors
reflect the hydrophobic properties of the molecules.

The validation results show that the best models for �-CD and
SBE-�-CD complexation free energies were obtained via Cubist
and RF algorithms, respectively. The RF approach demonstrated
more consistent performance by producing good models for both
cyclodextrins, with Cubist failing to achieve a comparable result
for SBE-�-CD model (Table 3). Overall, the performance of the best
�-CD and SBE-�-CD models with the tests sets is quite good demon-
strating the strength of the selected machine learning regression
methods.

Generally, the predictive power of a QSPR model depends on the
degree of similarity between the molecules to be predicted and the
molecules in the training set, as measured by both the maximum
similarity coefficient and the number of the nearest neighbors. Cor-
respondingly, the largest errors in the �-CD and SBE-�-CD test sets

prediction are made for the molecules having zero similarity to
the training sets, as evidenced by griseofulvin, benzidine, and 3,5-
dibromophenol in Figs. 3b, c and 4a,  respectively. In spite of the fact
that almost half of the compounds from the �-CD test sets have no

http://www.chemcomp.com/
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Table  2
Measured complexation constants between sulfobutylether-�-cyclodextrin and
organic molecules. The measurements were taken at 25 ◦C (series 1, S1) and at 20 ◦C
(series 2, S2). See experimental section for details.

Compound K, M−1 Comments

(−) Sulpiride 35 S2
1,2,3-Trichlorobenzene 31,567 S2
1-Naphthylamine 518 S2
1-Phenylpyrrole 555 S2
2-(1-Adamantyl)-4-methylphenol 148 S2; S0 below limits of

detection. Keq

calculated using the
extrapolated value

2-(2-Aminophenyl)-benzothiazole 16,444 S2
2,2′ ,4,4′-Tetrahydroxybenzophenone 3006 S2
2-Naphthylamine 780 S2
2-Phenylquinoline 27,039 S2
3-(4-Methylbenzylidene)camphor 285 S2; S0 below limits of

detection. Keq

calculated using the
extrapolated value

3,4-Dihydro-2(1H)-quinolinone 12 S2
3,5-Dibromophenol 18 S2; the compound is

partially ionized under
the experimental
conditions

3,5-Dichlorophenol 9.2 S2; the compound is
partially ionized under
the experimental
conditions

3-Benzoylpyridine 5104 S2
3-Tert-butylphenol 611 S2
4′-(Imidazol-1-yl)acetophenone 193 S2
4-(Trifluoromethoxy)phenylacetic acid 9.85 S2; the last point (6%

SBE-�-CD) deviated
from the linear trend
and was excluded from
analysis. The
compound is partially
ionized under the
experimental
conditions

4-(Trifluoromethyl)phenylacetic acid 20.5 S2; the compound is
partially ionized under
the experimental
conditions

4,4′-Dihydroxybenzophenone 1718 S2; the last point (6%
SBE-�-CD) deviated
from the linear trend
and was excluded from
analysis

4,5-Diazafluoren-9-one 35 S2
4′-Cyclohexylacetophenone 21,277 S2
4′-Hydroxypropiophenone 632 S2; the compound is

partially ionized under
the experimental
conditions

4-Tert-amylphenol 4516 S2
4-Tert-butylphenol 1886 S2
5-Aminosalicylic acid 2.23 S1
5-Fluorocytosine 0 S2
5-Fluorouracil 49 S2; the compound is

partially ionized under
the experimental
conditions

6-Hydroxy-3,4-dihydro-2(1H)-
quinolinone

183 S2

7-Hydroxy-3,4-dihydro-2(1H)-
quinolinone

84 S2

Acetazolamide 103.97 S1
Acridine 2993 S2
Adenine 53.01 S1
Adenosine 17.24 S1
Atropine 5.3 S2; the compound is

partially ionized under
the experimental
conditions

Azathioprine 115 S2

Table 2 (Continued)

Compound K, M−1 Comments

Bendroflumethiazide 548.5 S2; the compound is
partially ionized under
the experimental
conditions

Benzamide 55.64 S1
Benzocaine 759.24 S1
Benzoic acid 497.63 S1
Betamethasone 213 S2
Biphenyl 951 S2
Bis-(4-hydroxyphenylmetnane) 5381 S2
Butamben 3522 S2
Butylparaben 2341 S2; the compound is

partially ionized under
the experimental
conditions

Caffeine 0 S2
Carbazole 1935 S2
Chloramphenicol 234 Average of 144.9 (S1)

and 323 (S2)
Chlorthalidone 310.92 S1
Chlorzoxazone 182.18 S1
Cimetidine 74 S2
Corticosterone 1303 S2
Cortisone 1124.22 S1
Cortisone-21-acetate 15,457 S2
Cytosine 0.46 S1
Dapsone 4356 S2
Deoxycorticosterone 11,456 S2
Dexamethasone 3253 S2
Diatrizoic acid 0.0 S1
Diazepam 496 S2
Dibenzofuran 1010 S2; S0 below limits of

detection. Keq

calculated using the
extrapolated value.

Dibenzothiophene 1543 S2; S0 below limits of
detection. Keq

calculated using the
extrapolated value.

Diuron 2069.02 S1
Equilin 39,489 S2
Estriol 25111.41 S1
Estrone 21755.33 S1
Ethylparaben 4433.54 S1
Ethynylestradiol 104,820 S2
Fenbufen 125 S2; the compound is

partially ionized under
the experimental
conditions

Fluconazole 14 S2
Flufenamic acid 7032.34 S1
Fluocinolone acetonide 2514 S2
Folic acid 27.05 S1
Glafenine 6034 S2
Griseofulvin 105 S2
Guaifenesin 2.95 S1
Guanine 0.0 S1
Hydrochlorothiazide 2262.64 S1
Hydrocortisone 1247.34 S1; compare to

literature value of 2516
(Zia et al., 2000)

Hydrocortisone-17-butyrate 2168 S2
Hydrocortisone-21-acetate 2600 S2
Hydroflumethiazide 44.31 S1
Ibuprofen, ionized 793 S1; buffered pH 6; pKa

4.4
Indapamide 368.28 S1
Indoprofen 1341.59 S1
Ketoprofen, ionized 87.53 S1
Khellin 12 S2
Meclofenamic acid 670 S2; the compound is

partially ionized under
the experimental
conditions

Mefenamic acid 2228.56 S1
Menadione 290 S2
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Table  2 (Continued)

Compound K, M−1 Comments

Methocarbamol 36.73 S1
Methyl-3-nitrobenzoate 135 S2
Methylparaben 3363 S2
Minoxidil 522 S2
Naphtalene 5493 S2
Naproxen, ionized 314 Average of 238 (Zia

et al., 2001); 273 (S1);
432 (Okimoto et al.,
2004)

Nitrofurantoin 18.06 S1
N-phenylanthranilic acid 14.5 S2; the compound is

partially ionized under
the experimental
conditions

Omeprazole 93 S2
Phenacetin 285 S2
Phenanthrene 25,008 S2
Phenanthridine 2192 S2
Phenazine 894 S2
Phenolphthalein 6447 S1
Phenothiazine 2856 S2
Phenoxazine 577 S2
Phenylbutazone 0 S2
Pranlukast hemihydrate 205 S2; S0 below limits of

detection. Keq

calculated using the
extrapolated value.

Praziquantel 893 S2
Prednisolone-21-acetate 621 S2
Primidone 314.6 S1
Progesterone 31,846 Average of 37048.35

(S1) and 26,644
determined by
non-phase solubility
method (Zia et al.,
2000)

Propylparaben 1427 S2
Pyrazinamide 6.56 S1
Pyroquilon 244 S2
Quinidine 490 S2; the compound is

partially ionized under
the experimental
conditions

Salicylamide 535.33 S1
Salicylic acid 17.08 S1
Spironolactone 20,408 Average of 15,816

(Jarho et al., 2000)
25,000 (S1, calculated
using the intrinsic
solubility from (Jarho
et al., 2000))

Sulfacetamide 60.84 S1
Sulfadiazine 230.32 S1
Sulfamerazine 124.68 S1
Sulfamethazine 148.65 S1
Sulfamethoxazole 347.19 S1
Sulfisoxazole 2.4 S2
Tenoxicam 9 S2
Tetraethylthiuram disulfide 26,618 S1
Theobromine 1 S2
Theophylline 3.21 S1
Thiamphenicol 296.1 S1
Thianaphthene 8120 S2
Thianthrene 21,391 S2; S0 below limits of

detection. Literature
value of 1.1 × 10−6 M
was used to calculate
Keq (Stovall et al., 2005)

Thymine 0.7 S1
Tolnaftate 1844 S2; S0 below limits of

detection; the
extrapolated solubility
was negative.
Literature value of
1.6 × 10−6 M was used
to calculate Keq (Peri
et al., 1994)

Table 2 (Continued)

Compound K, M−1 Comments

Triamcinolone 703 S2
Triamcinolone acetonide 2904 S2
Triamterene 33 S2
Trimethoprim 87 S2
Uracil 0 S2
Uric acid 0.0 S1
Vanillin acetate 107 S2
Xanthene 8008 S2; S0 below limits of

detection; the
extrapolated solubility
was negative.
Literature value of
6.2 × 10−6 M was  used
to calculate Keq (Stovall
et al., 2005)

Xanthine 0.0 S1

Fig. 3. Scatter plot of predicted (Cubist model) vs. observed �-CD complexation free
energies for training (a), test 1 (b) and test 2 (c) sets. The color of the datapoints of
the  test set characterizes the highest similarity of the test molecules to those in
the training set, ranging from red (zero similarity) to dark blue (highest similarity
below 1).
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Table  3
Statistical performance of the QSPR models for �-CD complexation free energies. The best model results according to the tests performance are highlighted in bold.

System Statistical
parameter

RF Cubist

Training set Test set 1 Test set 2 Training set Test set 1 Test set 2

�-CD R2 0.978 0.912 0.816 0.996 0.945 0.831
RMSE, kJ/mol 0.85 3.65 2.28 0.29 2.09 1.92
MAE, kJ/mol 0.64 2.55 1.83 0.21 1.54 1.52

SBE-�-CD  R2 0.938 0.924 – 0.704 0.912 –
RMSE, kJ/mol 2.37 2.71 – 4.26 2.82 –
MAE,  kJ/mol 1.72 2.12 – 3.01 2.12 –

Table 4
Five most important descriptors in each best model.

Symbol Importance,a % Description

�-CD (Cubist) log S 69 Log of the aqueous solubility (mol/L).
Q VSA HYD 17 Total hydrophobic van der Waals surface area.
kS sOH 12 Kier E-state for –OH
BCUT SLOGP 3 7 The BCUT descriptors using atomic contribution to log P
PEOE VSA FPPOS 5 Fractional positive polar van der Waals surface area

SBE-�-CD  (RF) AC2D A QSIG 2 82 Autocorrelation vector with topological distance of 2 and atomic property of � charge
AC2D  A QTOT 1 96 Autocorrelation vector with topological distance of 1 and atomic property of total charge
AC2D A QPI 1 78 Autocorrelation vector with topological distance of 1 and atomic property of � charge
log  P (o/w) 66 Log of th
Q VSA FHYD 64 Fraction

ases i
r

n
p

t
(
n
w
S
(

F
f
s
s

a For the Cubist model the descriptor importance is presented via percentage of c
ule.

earest neighbors in the training set (Fig. 3b and c), the overall
rediction statistics of this model is very good (Table 3 and Fig. 3).

The best model for �-CD (Cubist) shows noticeably better
raining and validation results than the best model for SBE-�-CD
RF). Such behavior can be attributed to the more complicated
ature of the SBE-�-CD/guest system. Most importantly, in contrast

ith the �-CD models derived using simpler organic molecules,

BE-�-CD model is developed for the larger and more complex
drug like) molecules. Additionally, SBE groups are negatively

ig. 4. Scatter plot of predicted (RF model) vs. observed SBE-�-CD complexation
ree energies for training (a) and test (b) sets. The color of the datapoints of the test
et characterizes the highest similarity of the test molecules to those in the training
et,  ranging from red (zero similarity) to dark blue (highest similarity below 1).
e octanol/water partition coefficient – a linear atom type model
al hydrophobic van der Waals surface area

n the training data for which the descriptor appears in a condition of an applicable

charged and might display electrostatic interaction with positively
charged ligands outside the hydrophobic cavity thus introducing
an alternative mechanism of complexation. The highest errors in
the SBE-�-CD training set prediction (Fig. 4a) are obtained for
the molecules with the observed zero Keq values, especially for
phenylbutazon and diatrizoic acid. As mentioned in the experi-
mental section, the molecules with the Keq = 0 were assigned zero
free energy of complexation instead of infinity to enable their use
in the model. The validation results suggest that this assumption
could have been oversimplified, and such systems warrant further
attention.

4. Conclusions

In this study, we presented a new set of experimental data for
SBE-�-CD complexation constants, which in combination with lit-
erature available observations were used for the development of
the QSPR models by two  machine learning regression methods –
Cubist and Random Forest. Similar modeling was  performed for �-
CD complexation free energies based on the data available from
the literature (Katritzky et al., 2004; Suzuki, 2001). The results of
the modeling demonstrated successful applicability of the machine
learning regression methods towards building �-CD and SBE-�-CD
complexation models. Due to the relatively small size of the avail-
able data, the most reliable application of these models is limited
to the certain chemical space. More experimental observations will
allow expanding this space in the future studies.
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